3.827 \(\int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=148 \[ -\frac{b \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a d \left (a^2-b^2\right )}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b^2\right )}+\frac{\left (a^2+b^2\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a-b) (a+b)^2}+\frac{a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} (a+b \sec (c+d x))} \]

[Out]

-(EllipticE[(c + d*x)/2, 2]/((a^2 - b^2)*d)) - (b*EllipticF[(c + d*x)/2, 2])/(a*(a^2 - b^2)*d) + ((a^2 + b^2)*
EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a*(a - b)*(a + b)^2*d) + (a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[
c + d*x]]*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.393874, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {4264, 3844, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ -\frac{b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d \left (a^2-b^2\right )}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \left (a^2-b^2\right )}+\frac{\left (a^2+b^2\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a d (a-b) (a+b)^2}+\frac{a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt{\cos (c+d x)} (a+b \sec (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2),x]

[Out]

-(EllipticE[(c + d*x)/2, 2]/((a^2 - b^2)*d)) - (b*EllipticF[(c + d*x)/2, 2])/(a*(a^2 - b^2)*d) + ((a^2 + b^2)*
EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a*(a - b)*(a + b)^2*d) + (a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[
c + d*x]]*(a + b*Sec[c + d*x]))

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3844

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a*d^2
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2))/(f*(m + 1)*(a^2 - b^2)), x] - Dist[d^2/((
m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Lt
Q[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^2} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{(a+b \sec (c+d x))^2} \, dx\\ &=\frac{a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} (a+b \sec (c+d x))}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{a}{2}-b \sec (c+d x)+\frac{1}{2} a \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{-a^2+b^2}\\ &=\frac{a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} (a+b \sec (c+d x))}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{a^2}{2}-\frac{1}{2} a b \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{a^2 \left (-a^2+b^2\right )}-\frac{\left (\left (a^2+b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 a \left (-a^2+b^2\right )}\\ &=\frac{a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} (a+b \sec (c+d x))}+\frac{\left (a^2+b^2\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 a \left (a^2-b^2\right )}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{2 \left (-a^2+b^2\right )}+\frac{\left (b \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx}{2 a \left (-a^2+b^2\right )}\\ &=\frac{\left (a^2+b^2\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a (a-b) (a+b)^2 d}+\frac{a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} (a+b \sec (c+d x))}-\frac{\int \sqrt{\cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )}-\frac{b \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a \left (a^2-b^2\right )}\\ &=-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{\left (a^2-b^2\right ) d}-\frac{b F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a \left (a^2-b^2\right ) d}+\frac{\left (a^2+b^2\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a (a-b) (a+b)^2 d}+\frac{a \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt{\cos (c+d x)} (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 3.23772, size = 233, normalized size = 1.57 \[ \frac{\frac{4 a \sin (c+d x) \sqrt{\cos (c+d x)}}{\left (a^2-b^2\right ) (a \cos (c+d x)+b)}-\frac{\frac{2 \sin (c+d x) \left (2 b (a+b) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right ),-1\right )-\left (a^2-2 b^2\right ) \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{b \sqrt{\sin ^2(c+d x)}}+4 b \left (2 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-\frac{2 b \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )-\frac{2 a^2 \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}}{a (a-b) (a+b)}}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^2),x]

[Out]

((4*a*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*(b + a*Cos[c + d*x])) - ((-2*a^2*EllipticPi[(2*a)/(a + b),
 (c + d*x)/2, 2])/(a + b) + 4*b*(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])
/(a + b)) + (2*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d
*x]]], -1] - (a^2 - 2*b^2)*EllipticPi[-(a/b), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[Sin[c +
d*x]^2]))/(a*(a - b)*(a + b)))/(4*d)

________________________________________________________________________________________

Maple [B]  time = 3.88, size = 707, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2
*a/(a-b),2^(1/2))-2*b/a*(a^2/b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)/(2*cos(1/2*d*x+1/2*c)^2*a-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*a/b/(a^2-b^2)*(s
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/
(a^2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^
4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)